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The differential geometry of an imbedded (e.g. string or membrane world sheet) surface in 
a higher-dimensional background is shown to be conveniently describable (except in the null 
limit case) in terms of what are designated as its first, second, and third fundamental tensors, 
which will have the respective symmetry properties r/~=r/tu~ ~ as a trivial algebraic identity, 
K u f = K ~  p as the "generalised Weingarten identity", which is the (Frobenius type) integra- 
bility condition for the imbedding, and ~apf=---t~p~P as a "generalised Codazzi equation", 
which depends on the background geometry being flat or of constant curvature, needing re- 
placement by a more complicated expression for a generic value of the background curvature 
B,aU~. The "generalised Gauss equation" expressing the dependence on this background cur- 
vature of the internal curvature tensor R,aUv of the imbedded surface is converted into terms 
of the first and second fundamental tensors, and it is thereby demonstrated that the vanishing 
of the (conformally invariant) "'conformation tensor", i.e. the trace free part Cuf  of the second 
fundamental tensor K~/ ,  is a sufficient condition for conformal flatness of the imbedded sur- 
face (and thus in particular for the vanishing of its (Weyl type) conformal curvature tensor 
C, aU~) provided the background is itselfconformally fiat. In a trio of which the first two mem- 
bers are the generalised Gauss and Codazzi equations, the "third" member is shown to give an 
expression in terms of Cu/for the (trace free, conformally invariant ) "'outer curvature" tensor 
12,~u,. whose vanishing is the condition for feasibility of the natural generalisation of the Walker 
frame transportation ansatz. The vanishing of C~f  is shown to be sufficient in a conformally 
flat background for the vanishing also of.Q~u~. 
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Dedicated to Roger Penrose 

1. Introduction 

The earliest work on differential geometry by Gauss and his contemporaries 
was concerned mainly with the extrinsic properties of an imbedding with respect 
to a background space. However, following the reorientation of the subject by 
Riemann, the emphasis has been increasingly redirected to the purely intrinsic 
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properties of differential manifolds, to such an extent that textbooks dealing with 
differential geometry, particularly those most commonly consulted by theoretical 
physicists since the time of Einstein, have tended to neglect or even ignore the 
topic of imbeddings, which was the historic focus of interest. A revisit, and a 
more thorough exploration, of this older field of preoccupation has, however, 
been made overdue by many new developments, of which the most obviously 
notable is the rise of string theory and its generalisations to higher-dimensional 
systems. The purpose of this essay is to help fill the gap by making available to 
theoretical physicists a conveniently accessible self-contained account of some of 
the most important local curvature properties of differential imbeddings of arbi- 
trary dimension p, say, in a background (Riemannian or pseudo-Riemannian) 
space of higher dimension n, say, including some (particularly the conformal) 
aspects that to my knowledge have not yet been competely treated even in the 
pure mathematical literature. 

For students of earlier generations, including my own and that of Roger Pen- 
rose, to whom this work is dedicated, the most widely used introduction to this 
field was probably that provided by Eisenhart's classic textbook "Riemannian 
Geometry" [ 1 ], while for a rather younger generation an equivalent role was 
played, albeit using a very different notational style, by the "Foundations of Dif- 
ferential Geometry" of Kobyashi and Nomizu [2 ]. However, the source that was 
in practice by far the most helpful to me in obtaining the clarification offered 
here was Schouten's "Ricci Calculus" [ 3 ], while I should also mention the work 
of Chen [4,5 ] (in a more trendy notational style) as being, among the limited 
sample of relevant pure mathematical sources of which I am at present aware, 
one of those that goes furthest towards the results presented here. 

The first part of this work, up to and including section 5 (and also the appen- 
dices) will be concerned with setting up a generally covariant background tensor 
notation scheme (and of  an auxiliary frame system that will be used as sparingly 
as possible) and the systematic treatment of features arising at first differential 
order, generalising results whose historic prototypes are commonly cited with ref- 
erence to the name ofJ .  Weingarten. The second part (sections 6 to 10) is con- 
cerned with features arising at second differential order, including as a notewor- 
thy example the relation that is the third in a set of which the first two members 
are much more widely known, being commonly cited with reference to the names 
of K.F. Gauss and D. Codazzi, respectively. 

Already in Eisenhart's textbook [ l ] attention was explicitly drawn to the exis- 
tence of a set of not two but three fundamental equations relating the geometrical 
configuration of an imbedding to the background spacetime curvature via the 
three relevant kinds (tangential, mixed, and orthogonal) of projection of the lat- 
ter onto the imbedded surface. The first two of these projections give the pair of 
widely famed equations that can be considered as generalisations of results orig- 
inally derived in the specialised context of hypersurfaces in a three-dimensional 
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flat background by Gauss and Codazzi, but the last one has languished in relative 
obscurity. It is hoped that the present work will help to rectify this: it will be 
shown below that the "third equation" in question is expressible in a form (eq. 
9.7 ) that reduces, for a flat, or at least conformally flat, background, to the by no 
means unmemorable formula 

I2J'~ = 2 C~t~'Ca]~, ( 1.1 ) 

whose right hand side involves a conformally invariant and trace free "confor- 
mation tensor" Ct, f  that will play a central role in all the work that follows - and 
whose vanishing will be shown to be a sufficient condition for conformal flatness 
of the imbedded surface - while its left hand side consists of the naturally defined 
and, as will be shown, conformally invariant and also entirely trace free "outer 
curvature tensor" £2~'~. The latter is not to be confused with the associated and 
again conformally invariant and trace free Weyl type "conformal curvature ten- 
sor" C~"~, which will also have to vanish under the same conditions, having also 
a quadratic dependence (eq. 10.7) on C~,f. The outer curvature tensor is inter- 
pretable as representing the Yang-Mills type gauge curvature of the bundle of 
surface orthogonal frames with respect to the connection that is naturally induced 
by the Riemannian structure. The vanishing of this tensor £ 2 ~  is thus the nec- 
essary and sufficient condition for it to be (locally) feasible to apply the natural 
generalisation of the Walker frame transportation ansatz [6 ] (on which Fermi-  
Walker type coordinate systems are based. ) 

One of the reasons why the "third" projection seems to have escaped the atten- 
tion of early generations of geometers was that its result is always trivial - each 
side of ( 1.1 ) being identically zero - whenever either the dimension or the codi- 
mension of the imbedded surface is less than two, and hence always in a three- 
dimensional background, as also more generally for a curve (the case with which 
Walker was concerned) or for a hypersurface (the case with which Gauss and 
Codazzi were concerned) in a background of arbitrary dimension. When the 
background dimension is four the only non-trivial applications are therefore to 
two-dimensional surfaces (which includes the case of a string world sheet), and 
even this case is of relatively simple (Abelian) type, with the outer curvature 
determined (as described at the end of section 9) by just a single (pseudo-)scalar 
invariant E2 which, in the fiat or conformally fiat background case to which ( 1.1 ) 
applies, will be given in terms of  the background measure tensor simply as 

0 = ~'a,,,C=/'C~'" 

(an equation which we shall leave unnumbered since, unlike the formally num- 
bered equations throughout this work, its validity is dimensionally restricted); it 
will be made apparent in section 9 that (subject to suitable fixed boundary con- 
ditions) the surface integral of this quantity £2 will give a topological invariant 
that is the outer analogue of the well known Gauss-Bonnet invariant for the inner 
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(Ricci) curvature scalar (which means that it cannot give any effective contri- 
bution as'a Lagrangian term in a variation principle). To obtain the most math- 
ematically interesting (non-Abelian as opposed to Maxwellian type) examples, 
however, it is necessary to have a codimension of at least three, with a back- 
ground dimension of five or more. 

In accordance with the standard practice of calling things after famous early 
pioneers who may only have had a hazy glimmering of their existence or mean- 
ing, the illustrious name of G. Ricci was used by Schouten (as subsequently by 
Chert) for his version of the "third" projection from which our relation ( 1.1 ) 
was decanted. However, a generation earlier it had been given no name at all by 
Eisenhart (who, unlike Schouten and Chen, had apparently not yet clearly grasped 
the significance of the outer curvature). Eisenhart did, however, refer not only to 
Ricci's work on the subject at the beginning of the present century but also to that 
of a certain A. Voss, whose writing twenty years earlier might arguably qualify his 
name as a more appropriate label for the third equation. Whether one prefers to 
name the author who first considered it in a special case, or the author who first 
properly understood it in full generality, my impression (admittedly without 
having examined the original German and Italian language sources) is that Ricci 
(who in any case has so much else to his credit) should on this occasion miss out 
either way, and that, if it is not named after Voss, then the relation expressed here 
in the form ( I. I ) might more justifiably be named after Schouten himself. 

What, as far as I know, is essentially new in the present work, in addition to 
what I hope will be perceived, at least by physicists, as a usefully streamlined but 
nevertheless sufficiently explicit representation scheme (based on imbedding 
supported background tensors, and intended to combine the advantages of the 
very different schemes used by Schouten and by Chen), is the consideration given 
to the conformal properties of the imbedding geometry, and in particular the at- 
tention that is drawn to the role of the conformally invariant trace free part C~,f 
[defined by (5.9) ] as distinct from the full second fundamental tensor K~,f [de- 
fined by (5.2) ], with which it is identifiable only in cases for which the imbed- 
ding is what in mathematical terminology would be referred to as an isometric 
harmonic [7,8 ] mapping, meaning that it satisfies a condition of stationarity with 
respect to small perturbations of the induced surface measure, which is equiva- 
lent to that of  what has come to be known to theoretical physicists [9 ] as the 
Howe-Tucker [ 10 ] brahe action. 

2. Advantages of using imbedding supported background tensors 

Although a plausibly sufficient reason in the case of earlier geometers, lack of 
interest in higher-dimensional cases can certainly not account for the failure to 
obtain relation ( 1.1 ) by a worker such as Eisenhart, who actually went to the 
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trouble of writing down a dimensionally unrestricted and rather complicated 
("Voss" or "Ricci" equation) relation that was logically equivalent to ( 1.1 ), but 
with additional terms on each side whose effect was to destroy their separate ten- 
sorial character, thus entirely obscuring the clear geometric interpretation (as a 
"Walker" or "Schouten" curvature equation ) that becomes possible after the dis- 
parate contributions have been properly sorted out. Eisenhart's inability to see 
how to tidy up the mess was partly due to the unavailability at the time of con- 
cepts that have since been made widely familiar by the development of non-Abe- 
|ian gauge theory, but it was also due to the use of an unnecessarily hairy notation 
system (of the kind that is still most commonly used by theoretical physicists) in 
which the use of too many kinds of (large and small, Latin and Greek .... ) indices 
made it hard to see the wood for the trees. 

It is in reaction against the clumsy and inaesthetic notation schemes commonly 
used by their predecessors in the past (and by physicists far too often in the pres- 
ent) that pure mathematicians have more recently tended to go the opposite ex- 
cess of abbreviating their terminology to such a degree that it becomes computa- 
tionally powerless and potentially ambiguous outside its original context, refusing 
in extreme cases to admit the use of any indices at all on the ideological grounds 
that it is not merely inaesthetic but somehow actually immoral to introduce any 
machinery whose technicalities violate the underlying symmetries of the system 
under investigation. In this spirit one would not be allowed, for example, to ex- 
press the second fundamental tensor by K~J, as we do here, because the indices 
refer to an ultimately irrelevant choice of an underlying coordinate system. The 
trouble is that, if the offending tensor is just replaced by a "respectable" index- 
shorn operator symbol K, one is immediately faced with ambiguities of interpre- 
tation that oblige one to introduce explicit vectorial and covectorial arguments, 
which in this case would be a pair of (surface tangential) vectors X and Y, say, 
and a (surface orthogonal) covector 2, say, in terms of which K is specified by 
the numerical result of its action, which would be expressed as K(X, Y)2, which 
is neither shorter nor more objective than the original expression K~f, an irrele- 
vant choice of local coordinates having been merely replaced by a no less irrele- 
vant choice of basis (all that can be claimed is that either version is neater than 
the simultaneously base and coordinate dependent contraction formula for the 
corresponding scalar, which would of course have the form KvfX~'YV2p). 

It was a defensive counter reaction against the rather futile puritanism of the 
index suppression movement that Penrose developed the "abstract index" sys- 
tem [ 1 l, 12 ], showing how one can get away with the use of what not only look 
like indices but actually work like indices, yet are nevertheless deemed actually 
not to be indices as far as their legal status is concerned. Of  course this moral 
rehabilitation of indices does not in itself get round the original, purely prag- 
matic, problem of dealing with the complication that may arise when too many 
are involved: the management of such cases may require the use of sophisticated 
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diagrammatic techniques [ 12 ], and the exercise of balanced judgement in decid- 
ing how far indices should be allowed to proliferate in particular circumstances 
before the advantages of explicitness are outweighed by the disadvantages of dis- 
tracting technical complication. 

The present work is intended not just to derive particular geometrical results, 
but also to demonstrate the practical advantages of analysing imbedded surfaces 
in terms of a formalism [ 13,14 ] whose use is implicit in ( 1.1 ) and whose guiding 
principle is to rely as much as possible on the use of background tensors, even for 
fields whose support is confined to the range of the imbedding. In this approach 
the use of coordinate and frame dependent quantities is designed to be a balanced 
compromise between, on one hand, the often inconvenient integrist inhibitions 
displayed, for example, by many followers of Kobyashi and Nomizu and, on the 
other hand, the unnecessary and distracting complication of notation that was 
exemplified to a moderate degree by Eisenhart and that has since been taken to 
far more extravagant extremes by many physicists (particularly those who prefer 
never to treat submanifolds as straightforward imbeddings but only as supports 
for Dirac distributions). 

With the desideratum of a balanced compromise in view, the "imbedding sup- 
ported background tensor" approach developed here is based on the use of ten- 
sorial indices that refer implicitly to (or, if they are interpreted as "abstract in- 
dices", that simulate reference to) a local coordinate patch on the background 
manifold. Frame indices are introduced when absolutely necessary, but they are 
systematically eliminated as soon as possible, the various contributions being sys- 
tematically regrouped with the aim of getting to combinations that are tensorial 
in the strictest (generally covariant) sense. The distinguishing feature of the pres- 
ent approach is the scrupulous avoidance of the (occasionally useful but com- 
monly abused) practice of introducing special coordinate systems (not to men- 
tion superfluous Dirac distributions) taylored to the imbedding of particular 
surfaces. The latter feature makes this formalism outstandingly effective for 
treating intersections in which several surfaces of dimension p+  1, say, meet on a 
common boundary subsurface of dimension p. Such intersections are of frequent 
occurrence in the kind of physical (and in particular dynamical) applications for 
which the work of the following sections is primarily intended. 

A noteworthy example, involving the kind of p-dimensional intersection to 
which the above considerations apply, is provided by the general purpose force 
balance equation governing the effect on each other's movement of mutual con- 
tact between several (p+ I )-surface supported structures, each with its own (tan- 
gentially orientated) surface stress momentum-energy density tensor ~"~, say. 
Its expression in most other schemes would be rather awkward, but in the 
"imbedding supported background tensor" notation used here it is given [ 14 ], 
in terms of the analogous (tangentially orientated) surface stress momentum-  
energy density tensor T u~, say, of the p-dimensional junction structure, simply 
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by 

T~'~K~,f=7P,, Z 2 ~ " ~ ,  (2.1) 

where the notation 7P~ and K~f is used for the (purely geometric) orthogonal 
projection tensor and second fundamental tensor as defined in the next sections 
[by (3.4) and (4.15 ), respectively], and where, in each term of the summation 
on the right, ~ is the uniquelydefined (tangentially orientated) unit normal from 
the junction p-surface into the corresponding member of the set of externally at- 
tached (p+  1 )-surfaces over which the summation is to be taken. 

A typical application of the ubiquitously valid (but not correspondingly well- 
known) formula (2.1) is to the case (with p = 2 )  of one of the string-like junc- 
tions between membrane world sheets in a connected cluster of soap bubbles. An 
equation of the same form (2.1) would also be applicable to a junction between 
junctions, which, in the case of a cluster of soap bubbles, would have the form of 
a timelike world line (with p =  1 ) at the intersection of several (normally four) 
string-like membrane junctions. On the other hand, going back the other way 
towards higher dimension, (2. l ) can also be applied to the case of an individual 
soap bubble membrane, considered as a "sail" (with p =  2 ) whose motion is gov- 
erned by the difference between the atmospheric gas contributions from either 
side. I have called (2.1) the "generalised sail equation" because its simplest ap- 
plications (of  which the most obvious is to the case of an ordinary nautical sail) 
are of this last type, in which the junction is just a hypersurface, which as such 
will have a unit normal 2 ~ of its own that is unique up to a choice of sign, and for 
which the number of terms in the summation on the right will be only two, which 
means that the net contribution Y. 7 % ' ~  will be reducible to the form [ 7%'~]2~, 
where [ T ~'~ ] denotes just the ordinary discontinuity [ 7 ] between the "wind" stress 
momentum-energy density tensors on each side of the sail. 

3. Local frames and the first fundamental tensor 

Our ultimate intention here is to show how to set up a general purpose descrip- 
tion of the most important local geometric structures, and in particular the var- 
ious kinds of curvature that are associated with the imbedding of a spacelike or 
timelike p-surface in an n-dimensional space or spacetime background with met- 
ric g~,~, working as far as possible with generally covariant strictly tensorial quan- 
tities, with component indices/2, g = 1, ..., n associated with an arbitrary system 
of local coordinates x ~' on the n-dimensional background spacetime. As an aux- 
iliary that is useful for the intermediate stages in many calculations, we shall, 
however, make use also of quantities that are only pseudo-tensorial in the sense 
of being dependent on the choice of a local orthonormal frame. We shall use Greek 
indices A, O, ... = 1, ..., n to label the chosen set of orthonormal frame basis vec- 
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tors 0A" and their complementary forms 0A,. Their orthonormality will be expres- 
sible by the condition that their contractions have the form 

g~,,, = 0Ai,0"~,,, gAo=O~f,O0", (3.1) 

on the understanding that the background (Lorentzian or Euclidean signature) 
metric g,,, is used for raising and lowering spacetime indices, while the gAo are 
the constant components of the corresponding frame component metric in stan- 
dard (Minkowski or Cartesian ) diagonal form. 

As an essential aspect of our tactic (which distinguishes the present approach 
from much of the previously available literature on imbeddings) of working as 
far as possible only with quantities that are tensorial in the strictest sense, we shall 
rigorously avoid the introduction of any specialised coordinate system that is spe- 
cifically adapted to the imbedding under consideration; in particular we shall 
eschew the use of any distinguished subset of p internal coordinates within the 
imbedded surface, such as are commonly introduced at the outset in traditional 
discussions of the subject. Although we shall thus work only with a single set of 
coordinates whose choice is completely arbitrary and unrelated to the imbedded 
surface, we shall, however, take account of the location of the imbedding in the 
choice of the auxiliary frame whenever it is required, taking it to be oriented so 
as to decompose the frame vectors as distinct subsets that are respectively tangen- 
tial and orthogonal to the imbedded p-surface. Explicitly, the frame at each point 
will be taken to consist of two (mutually orthogonal ) subsets, { 0.~"} = { l~", 2 R "}, 
of which the former "inner" subset, labelled by early Latin basis indices, A, B, 
. . . .  1, ..., p, are tangential to the p-surface, while the latter "outer" subset, labelled 
by late Latin indices R, S, . . . .  p +  I, ..., n, are orthogonal to the p-surface, the 
mutual orthogonality of the two subsets of frame vectors being expressed by the 
condition z.4"2 R, = 0. 

The use of a preferentially oriented frame such as has just been described means 
that the original n-dimensional (Lorentzian or Euclidean) rotation group arbi- 
trariness in the choice of  frame will be broken, so as to leave a more restricted 
group consisting of the direct product of a p-dimensional "inner" rotation group 
acting within the tangent plane of the imbedding and of an (n-p)-dimensional  
"outer" rotation group acting orthogonally. One of the main tasks of this work 
will be to investigate the two distinct kinds of (respectively "inner" and "outer" ) 
curvature associated with these two ("inner" and "outer" ) frame gauge groups, 
the curvature itself being representable, as will be shown, in strictly tensorial 
(frame gauge independent) form. 

Having set up any such surface adapted frame, we can immediately use it for 
the explicit construction of the obviously frame independent, and thus strictly 
tensorial quantity with general coordinate components ~/,v that we refer to [ 13,14 ] 
as the (first) fi~ndamental tensor of the p-surface, which is obtained by summing 
over the inner frame vectors in the form 
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r p ' "  = t~j i 'z " f"  . ( 3.2 ) 

This field (which fully determines both the induced metric on the p-surface and 
the directional orientation of the tangent plane of its imbedding) is the natural 
starting point for any strictly tensorial analysis of the geometry of the imbedding. 
It is evident that the pth-rank operator of metric projection onto the p-dimen- 
sional tangent subspace to the imbedding is represented by the (conformally in- 
variant) mixed form r/if' of the fundamental tensor, which is characterised alge- 
braically by the symmetry and projection operator properties 

r/t~,,, ] = 0 ,  r l~ ' , , r l~=r l '~ ,  r l " . = p ,  (3.3) 

in which, as throughout, we employ the usual convention of using square and 
round brackets for index antisymmetrisation and symmetrisation, respectively. 

The same information (in conjunction with the background metric) as is con- 
tained in the fundamental tensor is also contained in its orthogonal complement ,  

7u~ =2R~AR~, (3.4) 

which has the analogous properties 

7[,,,,1 = 0 ,  7u,,~,~= 7"p, 7", ,=n--p, (3.5) 

and whose (conformally invariant) mixed form 7J', is evidently the ( n - p ) t h -  
rank operator of tensorial projection orthogonal to the tangent plane of the p- 
surface. These two tensors are evidently related by the complementarity and mu- 
tual orthogonality relations 

rl~'~+TU.=g~'~, r/~'~TUp=O, (3.6) 

where gU. is of course the (not just conformally but absolutely invariant) n-di- 
mensional unit matrix. 

4. Connection coefficients and the extrinsic imbedding curvature 

As far as the n-dimensional background geometry is concerned, it is well known 
that there is no non-trivial purely tensorial basis independent quantity that can 
be constructed from the metric at first differential order; the frame connection, 
as defined most simply by 

flu~A = V,,OA ~ (4. I ) 

(where V, is the usual Riemannian covariant differentiation operator associated 
with gj,~) can of course be converted into pseudo-tensorial form by contraction 
with the frame vectors so as to obtain 

flaJ'.=OA.VaO.~ J' , (4.2) 
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but despite the elimination of the frame indices the resulting antisymmetric con- 
nection "tensor" 

fla,,,, = fl~,,,,) (4.3) 

nevertheless remains f rame  gauge dependent, albeit to a somewhat lesser extent 
than the corresponding pure frame components, namely the rotation coefficients, 
which are expressible as 

flAo~= Oo v~o~ v ' (4.4) 

where the transformation between coordinate and frame components is per- 
formed by the usual contraction mechanism as exemplified in this case by the 
definition 

17., = 0.,v17,. (4.5) 

The natural decomposition allowed by the preferential orientation of the frames 
with respect to an imbedding as described in the previous section allows the spec- 
ification of operations of purely tangential covariant differentiation within the 
imbedded surface, in terms of the corresponding purely internal covariant differ- 
entiation operations 

V.4 =tA~17~ . (4.6) 

We thus can go on the define the corresponding purely internal rotation coeffi- 
cients [the anologues within the surface of the background rotation coefficients 
(3.4) ] according to the analogous specification 

pASC= ZS~VAtC" , (4.7) 

these quantities being interpretable as the internal frame components of the nat- 
ural (Cartan-Riemann type) gauge connection for the group of p-dimensional 
internal frame rotations that preserve the constant unit diagonal form of the in- 
ternal frame metric 

r/.4s = z ~ ' z s , ,  ( 4 . 8 )  

which is to be used for raising and lowering of the internal frame indices A, B, C, 
.... The point to be emphasized (since it is what enables us to analyse the geome- 
try of the p-surface without the need to complicate our notation scheme by the 
use of an auxiliary subsystem of specially chosen internal coordinates) is that the 
quantities r/.~s and p.4Sc constructed above are the same as would have been ob- 
tained by the more traditional approach of first working out the p-dimensional 
metric induced directly in the surface by imbedding and then defining the oper- 
ations of covariant differentiation on the tangential frame vectors in terms just 
of the ordinary p-dimensional Riemannian connection associated with this met- 
ric within the surface.This is because the operation (4.6) not only has the prop- 
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erty of being well defined when acting on an arbitrarily oriented field that is dif- 
ferentiably supported by the p-surface (even if the field is not defined elsewhere 
in the neighbourhood), but moreover, when it acts on a vector that is restricted 
to be tangent ial  to the surface, so that an alternative definition in terms only of 
the internal geometry is available, then it is easily verifiable that the effect of 
(4.6) as defined above will be the same  as if the alternative purely intrinsic defi- 
nition had been used. 

It is evident that the tangential differentiation operators specified by (4.6) can 
also be used in a rather similar way to construct what may appropriately be de- 
fined as external  rotation coefficients, according to the specification 

COARS=,l R , v  42 J , (4.9) 

these quantities being interpretable as the frame components of the naturally in- 
duced (Yang-Mills type) gauge connection for the group of (n-p)-d imensional  
external frame rotations that preserve the constant unit diagonal form of the ex- 
ternal frame metric 

7RS=2R~2S" . (4.10) 

In addition to the purely inner and purely outer frame rotation coefficients 
specified by (4.7) and (4.9), the p-surface adapted tangential and orthogonal 
basis vectors lA" and 2R ~ can be used for the definition of the m i x e d  rotation 
coefficients, which are given by 

KABR =;tR,VAIB" = -- ZB"VA;tR,. (4.1 1 ) 

Although formally tensorial, the spacetime component versions (as obtained 
by contraction with the corresponding frame vectors) of the purely inner and 
purely outer rotation coefficients are still frame dependent; they are obtainable 
from the analogous spacetime component version fix", of  the background connec- 
tion by taking the contractions 

px~', = )Id)I~,l,'flp~', , ¢oa". = rldT~'yJflp~'~ , (4.12 ) 

which cvidcntly satisfy 

p,1(~.,) = 0, )',~#p,,~,,, = )'~,"p,~,,,, = 0, (4.13) 

a),~(~.,) ----0, 7.~'~co,,~,,,= ~/~,"co,~.= 0. (4.14) 

The frame gauge dependence of the internal and external frame rotation pseudo- 
tensors P~ow) and coat~,, ) means that they can always be set equal to zero at any 
single chosen point by an appropriate choice of the relevant frames. Nevertheless 
it will not in general be possible for them to be taken to vanish over the whole 
neighbourhoods of surfaces of arbitrary dimension, which would correspond to 
the implementation of higher-dimensional analogues of the Walker frame prop- 
agation ansatz (on which the construction of Fermi-Walker coordinate systems 
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is based) [6], which is feasible automatically in the case of a one-dimensional 
trajectory, but which would in general break down except under the restrictive 
conditions required for vanishing of the relevant curvature tensors as evaluated 
in the following sections. 

In contrast with the situation that has just been described, there is no problem 
of frame dependence for the spacetime component version of the mixed rotation 
coefficients (4.11 ), which is obtainable directly from the background connection 
coefficients by taking the contraction 

KaS = ~laP~l,/~"tia ~ . ( 4.15 ) 

This extrinsic imbedding curvature tensor evidently has the properties of tangen- 
tiality of the first two indices and orthogonality of the last, 

~a"Koif = ~TKaJ = Kj,,,~'~I~ "= 0 . (4.16 ) 

The fact that (4.15 ) determines a quantity that is strictly tensorial [and thus on 
a different footing from those defined by (4.12), which are merely pseudo-ten- 
sorial] is advertised by its award of a capital Latin (rather than small Greek) 
symbol, and will be made manifest by the alternative definition [13,14] to be 
given in the next section. 

For poetical and historical reasons, and also as a matter of practical conve- 
nience, it is customary to introduce nomenclature based on the names of the pi- 
oneering precursors in any field. In such a scheme Pao,,~ might appropriately be 
referred to as the Riemann pseudo-tensor while o9~(,,) =0  might correspondingly 
be referred to as the Walker pseudo-tensor. Going on in the same spirit (of nam- 
ing something after someone who had only a first glimmering of its existence) 
one might appropriately refer to K~,f as the Weingarten tensor, in honour of the 
famous early investigator of the differential properties of normals to a hypersur- 
face [15-17]. 

5. The second fundamental tensor and its Weingarten identity 

The strict frame independence of the imbedding curvature tensor K , f  can be 
seen from the alternative, manifestly gauge independent construction in terms of 
the tangential covariant differentiation operator 

~ =~,pV,. (5.1) 

In terms of this operator a tensor that can easily be verified to be the same quan- 
tity as that given by (4.15 ) is specifiable directly in terms of the first fundamental 
tensor by 

ga, f  =~l,,~Va~h, ~ • (5.2) 
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This tensor is thus appropriately describable as the s e c o n d  f u n d a m e n t a l  t ensor  

since it contains complete algebraic information about the tangential derivative 
of the first fundamental tensor ql,~, the part that is projected out in (5.2) being 
recoverable by a symmetrisation operation: 

ff x rll, v = 2Kat,, ,  ) . (5.3) 

As well as being characterised generally by the obvious algebraic properties 
(4.16) of tangentiality of the first two indices and orthogonality of the last, this 
second fundamental tensor has the (generically) non-trivial symmetry property 

Kb,,1P=0, (5.4) 

which can be seen to follow from the consideration that, for any pair of given 
frame index values A and B, say, the commutator field V,~l~ j ' -  Vnz.fl of the corre- 
sponding tangential vector fields t.d' and z~ ~' must itself necessarily be tangential 
to the imbedded p-surface. Relation (5.4) is thus interpretable [ 13,14 ] (except 
in the one-dimensional case of a curve, for which it holds as a trivial identity) as 
a necessary and sufficient Frobenius type [ 3 ] integrability condition for the range 
of subspaces of the fundamental projector ~/1," to mesh together to form a well- 
defined imbedded p-surface. In the special case o fa  hypersurface ( p = n -  1 ), the 
symmetry property (5.4) reduces to the equivalent of what is referred to by Hicks 
[ 16] (in the index expurgated language of mathematical integrism) as the "self- 
adjointness of the Weingarten mapping". It therfore seems appropriate to refer 
to the unrestricted version (5.4) as the generalised Weingarten identity, or, to do 
greater historical justice, as the W e i n g a r t e n - F r o b e n i u s  ident i ty;  it can be thought 
of as being on a similar footing with respect to the three-index imbedding curva- 
ture tensor as the more widely familiar Ricci symmetry property [see (7.8) be- 
low] of an ordinary four-index Riemannian curvature. 

It is apparent from (3.11 ) that the first fundamental tensor can be considered 
as determining the orthogonally projected part of the acceleration vector/~P of 
the unit normalised tangent vector u ~' to any non-null curve in the p-surface ac- 
cording to the formula 

)'P,ti "= uUu ~Kuf, (5.5) 

using the standard notation 

ilP=u~'VI, u p , U"U,---- ~- 1 , (5.6) 

where the sign depends on both the signature of the background and on the space- 
like or timelike character of the curve. Indeed, the tensor K~,fl could be ap- 
proached from a different point of view by taking (5.4) and (5.5) conjointly as 
its defining relations. 

As in the Riemann tensor case, it is for many purposes useful to decompose the 
extrinsic imbedding curvature tensor into a t racepar t ,  K p, that plays a role rather 
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analogous to that of  the Riemannian Ricci tensor, and a trace free part, Cuff, that 
plays a role rather analogous to that of the Weyl conformal tensor. It clearly fol- 
lows from (4.16 ) that the curvature vector as given by 

KP=K, ' f  (5.7) 

is the only independent trace part, and that it will have the surface orthogonality 
property 

~u.K"=0. (5.8) 

Just as the vanishing of  the Ricci trace part of  a background space Riemann ten- 
sor expresses the dynamic equations for the simple vacuum case of the Einstein 
gravitational theory as governed by the Hilbert action, so analogously [ 13,14 ] 
the vanishing of  the extrinsic curvature vector as defined by (5.7) expresses the 
dynamic equations for the case of a simple cosmic string or membrane as gov- 
erned by a Di rac-Goto-Nambu (surface measure) action. 

When this trace is subtracted out one is left with what we shall refer to as the 
conformation tensor, 

Cxu~= K~.u"-p -~K~tb.u, (5.9) 

which is not only symmetric (by the Weingarten-Frobenius identity) but also 
trace free, 

Ctaul~=0, C;.fl'=O, (5.10) 

and has the same mixed tangentiality and orthogonality properties as the full ex- 
trinsic curvature tensor, 

r~ocj=cu~%~=0. (5.11) 

In terms of  this decomposition, (5.5) can be written out as 

yuvl" 1 v = 1l uU ~ C u P ' ~  p - ' K  p . ( 5.12 ) 

As well as being trace free, the conformation tensor that has just been intro- 
duced shares with the Weyl conformal tensor (to be discussed later on) the prop- 
erty of  being con formally invariant when written with the appropriate mixture of 
raised and lowered indices. When the metric undergoes a general conformal 
transformation of  the form 

gu~e-2agu~ ,  (5.13) 

it is obvious that the mixed (projector) version qu ~ of the first fundamental ten- 
sor and also its orthogonal complement yu ~ will be remain unaffected, i.e., we 
shall have 

rlu ~ t l ,  , yu ~yu  , (5.14) 
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and it is easy to verify for the second fundamental tensor that its trace free part 
will also be unaffected, i.e, we shall get 

C ~ f ~ C ~ ,  (5.15) 

whereas its trace, the intrinsic curvature vector, will suffer a non-trivial confor- 
mal adjustment proportional to the p-surface orthogonal projection of  the deriv- 
ative of the conformal factor, as given by 

K u ~  Ku + lWu~17,,tr . (5.16) 

The analogy between the conformation tensor and the Weyl conformal tensor 
(whose vanishing is the condition for conformal flatness in four or more dimen- 
sions) can be taken even further, since, as remarked in the introduction and shown 
below, in a conformally flat background the vanishing of  C~.u ~ is a sufficient con- 
dition for conformal flatness of  the induced metric on the imbedded ~surface - 
as also for the vanishing of  the outer curvature (i.e., for the existence of an exter- 
nal frame gauge for which the outer connection pseudo-tensor o~.u~ = 0). 

The best way to get a feeling for the working of  the formalism that has just been 
set up is of course to see how it works out in particularly simple special cases. In 
the examples that follow, which treat the trivial and semi-trivial cases p =  1 and 
p =  n -  l, respectively, the equations will be left unnumbered in order to advertise 
that their status is different from the numbered equations in the rest of the text, 
which are valid for generic values for the imbedding dimension p. 

As a trivial i [ustration of  the way the foregoing formalism works, the simplest 
special case is that of  a (non-null) curve (p=  1 ), for which the unit tangent vec- 
tor, u u [as characterised by (5.6) ] will be unique except for the sign of its orien- 
tation, which is irrelevant for the (quadratically dependent)results  that follow. 
It will, however, be necessary to take account of  the sign alternative in (5.6), 
which depends both on the temporal character of the curve and on the signature 
of the background metric. The first fundamental tensor, qua, its complement ),u~ 
and the unit normalisation condition will evidently be given in this case by 
expressions of  the form 

rlu~=-T-uuu~ , yu~=gu~+uuu, , ,  

where the lower sign alternative applies to the ease in which the background met- 
ric gu~ is positive definite, whereas if it is of  Lorentzian type either alternative is 
possible, the upper value corresponding to the case of a timelike curve when the 
standard MTW convention [ 17 ] is used. It follows that in terms of  the "acceler- 
ation vector", as traditionally defined by (5.6), the second fundamental tensor 
will be given simply by 

K u f  = -T- ?~.Ui, ~lp , 

which clearly means that the conformation tensor will merely vanish identically 
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while the curvature vector will be proportional to the acceleration, 

C~,,f = 0 ,  K"= -T- z~ p • 

The opposite extreme case (to which most of the relevant literature has been 
restricted ) is that of a (non-null) hypersurface (p = n -  1 ), which is considerably 
simpler than the generic case but not as trivial as that of a curve. In this case there 
will be a unit normal, 2v, that is well defined up to a choice of sign, which (unlike 
that in the tangent vector in the previous example), is not without significance 
for the formulae that follow, in which it will also be necessary to take account of 
a sign alternative depending both on the temporal character of the hypersurface 
and on the signature of the background metric. The first fundamental tensor, ql,,, 
its complement ~'l,, and the unit normalisation condition will evidently be given 
in this hypersurface case by 

rh,, = g , ,  +2t ,2 , ,  7u, = T-2~,2,, 2v2P= ~ 1 , 

where, as in the previous example, the lower sign alternative applies to the case 
in which the background metric gu,, is positive definite, whereas if it is of Lorentz- 
ian type either alternative is possible: on the understanding that the MTW con- 
vention [17 ] is used, the upper alternative would apply to the important case 
[ 18 ] of a spacelike initial vahte hypersurface, whereas for a membrane world sheet 
in a four-dimensional spacetime it is the lower alternative that would apply. In 
the case of any such hypersurface, one can construct a two-index symmetric 
imbedding curvature tensor that is well defined, modulo the inevitable sign am- 
biguity in the choice of orientation of the normal 2 v, by the formula 

K,, .  = K , , , % ,  . 

The restriction of this (background) tensor to the hypersurface [to which it is 
already automatically hypersurface tangential by (4.16) ] is what is usually known 
as the second fundamental form [ 16]. The full second fundamental tensor [whose 
definition (5.2), unlike that of the second fundamental form, involves no sign 
ambiguities whatsoever] will then be expressible as 

K,,f  = -T- K,,~2 ° , 

while the curvature vector will be expressible in terms of the scalar Kthat is iden- 
tifiable as the trace of the second fundamental form by the formula 

Kp = ~ K.~p , K= K," = KP~.p . 

Last, but as far as its interest for the present work is concerned not least, the 
conformation tensor of a hypersurface in n dimensions will be given by 

1 
CI,~P= ~ CI,,,2P , Cu~ =K,,, - n------~ Kq,,~ . 
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Although obviously trace free by construction, the (hypersurface tangential) ten- 
sor Cj,~ that (modulo a choice of sign depending on the orientation of the nor- 
mal) is defined in this way, and whose restriction to the hypersurface might nat- 
urally be termed the "conformation form", is not strictly invariant (unlike the 
full conformation tensor Cj, fl) under the conformal transformation ( 5.13 ), whose 
effect will be expressible by 

C ~ , ~ e " C ~ ,  K ~ e ° [ K +  ( n -  1 )2v 17vet ] . 

6. The third fundamental tensor and the Codazzi equation 

Having seen how, by eq. (5.3), complete first-order differential information 
about the imbedding is contained in the [by (5.2) manifestly gauge invariant] 
second fundamental tensor Kay,", it is natural to go on in an analogous way to 
introduce what we shall refer to as the third fundamen ta l  tensor ~a~,", constructed 
as the correspondingly projected derivative of the second fundamental tensor, 
namely 

~,~,, ~ = r/2pr/,j~ v 17jfpj. ( 6.1 ) 

In conjunction with the second fundamental form, this new (manifestly frame 
gauge independent) tensor does, as required, contain second-order differential 
information about the imbedding: the derivative components that are projected 
out in the defining construction can be recovered by a higher-order analogue of 
(5.3), which takes the form 

¢,¢Ka~,"= Z,a,," + 2K,~"(aK,, ~,," - K~ "oKa,," . ( 6.2 ) 

It is obvious from the way it has been constructed that this third fundamental 
tensor has the symmetry property 

~Kta~,]~=0 (6.3) 

as well as the properties of tangentiality (to the imbedding) of its first three in- 
dices and orthogonality of the last, i.e., 

~ -~a~, - Ya -~j ,  - - ~ t ,  r/~ - 0 (6.4) 

By comparing its frame component expression with that of the corresponding 
projection of the background Riemann curvature tensor B~'~ as given in the next 
section, we obtain a version of what Eisenhart [ 1 ] recognised as the natural ge- 
neralisation of the classical Codazzi equation for hypersurfaces, in the form 

2~t ~a l /=  tllcPl'l f f  rl l, r~o" B pa °r " ( 6 . 5 )  

In cases for which the background geometry has constant curvature in the sense 
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exemplified by De Sitter space, meaning that the background Weyl tensor and the 
trace free part of the background Ricci tensor both vanish so that the background 
Ricci curvature is fully determined in terms of a constant background Ricci scalar 
B by an expression of the form 

2 
B'aU~= n ( n -  1----~) gt~t"ga~"lB ' (6.6) 

it can be seen that the generalised Codazzi equation (6.5) will reduce to a form 
that is interpretable just as a condition of complete symmetry among the tangen- 
tial indices of the third fundamental tensor, as expressed by 

~,~l,"= ~ , ) " .  (6.7) 

In particular, this strong symmetry property of the third fundamental tensor will 
be valid for any imbedding in a background that isflat. 

7. Background curvature formulae 

We have introduced the symbol B for the n-dimensional background curvature 
(which in a more unwieldy but systematic nomenclature [ 8] would be indicated 
by t")R) in order to be able to reserve the usual symbol R for the internal Rie- 
mann curvature of the p-dimensional imbedded surface (which in the dimen- 
sionally systematic nomenclature [8 ] would be indicated by CP)R) that will be 
worked out in the next section. 

This background curvature tensor can be specified by the succinct expression 

B,a~,~, = 2 Vt,~fl~ lu~, , (7.1) 

or equivalently, by the more familiar albeit slightly longer Cartan type formula 

B ~ , =  2 V t ~flal *~,+ 2fit ~-~eflaleq,, ( 7.2 ) 

the vanishing of this field being the condition that is both necessary and (locally) 
sufficient for it to be possible to choose the frame vectors 0,1 ~' in such a way as to 
get the frame section coefficients f l o~ ,  to vanish. 

Starting from (7.2), one can easily obtain the more complicated pure frame 
component version 

Bae v,=2 PlflOl V'--2fltA elf l-  r ~'--2flt,t-flel~_~, (7.3) 

which will be needed in the next section, and one obtains the corresponding purely 
tensorial and, as is well known, strictly (albeit not manifestly) frame indepen- 
dent version needed for (6.5) as 

B~a ~' , = 2 le t ~.fla] ~'. + 2fit ~-"'flal,, • ( 7.4 ) 
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It is of course useful for many purposes to separate out the Ricci contractions 

Bl,~ -B~,,,~ , B=B~, ~ , (7.5) 

which (following Schouten [ 3 ] ) one can conveniently combine in the form 

1 Bgj,v (7.6) 
/~,,~ = B,,v 2 ( n -  1) 

(where it is to be recalled that n is the dimension of  the background spacetime 
under consideration). This makes it possible - assuming that the background 
spacetime dimension is at least three - to specify the background Wef t  tensor as 

4 
W~,~ = B ~ , ~ _  _ _  g[~. U,/~l ~1 (7.7) 

n--2 

From the usual Riemann and Ricci symmetry properties 

B .~,~ =Bt~lt~,~ 1 , Bt,au),  = 0 ,  (7.8) 

B~,~ = B ~ , ~ ,  B~,v =B~ , ,  (7.9) 

the Weyl tensor inherits the corresponding symmetry properties 

W~,~ = Wt~] u,~ 1 = Wj,~,~, Wtxaj, lv = 0 ,  (7.10) 

and it has the further property of being entirely trace free, 

W u ~ o = 0 .  (7.11) 

It is well known [ 3 ] that the vanishing of the Weyl tensor is a necessary con- 
dition for conformal flatness - again assuming that the spacetime dimension n is 
at least three. (If the spacetime dimension were only two, conformal flatness would 
hold automatically while the Weyl tensor would be undefined.) The condition 
that W~,~ should vanish is not only necessary but also sufficient for conformal 
flatness provided the background dimension satisfies n >/4. 

In the special case for which n = 3 the Weyl tensor is identically zero, whereas 
conformal flatness is still a non-trivial restriction, a sufficient as well as necessary 
condition in this case being the vanishing of the higher derivative tensor [ 3 ] 

/~,,,,p = izt,,/~lp. (7.12) 

(In higher dimensions, n >t 3, the vanishing of this tensor/~,~p is a necessary con- 
sequence of the vanishing of the Weyl tensor and hence remains always necessary 
for conformal flatness, even though it ceases to be sufficient. ) 

At the higher differential order involved in (7.12) it is to be recalled that we 
shall always have the Bianchi integrability condition 

lzt~.Ba,,l"~= 0 (7.13) 

holding as an identity for an arbitrary background metric. 
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8. Internal curvature and the Gauss equation 

By a procedure analogous to that described for the background spacetime in 
the previous section, we can now go on to construct the corresponding internal 
curvature tensor with frame components RAt~CD, say, whose vanishing will be the 
necessary and (locally) sufficient condition for it to be possible to choose the 
tangential frame vectors t../' in the imbedded p-surface in such a way as to get the 
corresponding internal connection coefficients pASc to vanish. 

In terms of these purely internal rotation coefficients P . f c  as given by (4.7) 
(or as equivalently obtainable purely in terms of the induced p-dimensional ge- 
ometry within the surface), the required frame components of the internal Rie- 
mann curvature of the imbedded p-surface will evidently be given by the corre- 
sponding p-dimensional analogue of ( 7.3 ), namely 

R.4 BCD = 2 V 1.4 PB] CD -I- 2/) [.4 CEP8 ]Eo - 2p[.4 EB ]pE c'D. ( 8. I ) 

This expression could be used to obtain the components of the Riemannian cur- 
vature of the induced metric with respect to a system of internal coordinates within 
the imbedded p-surface by expressing the tangential frame vectors in terms of 
such a system, but we shall not do this here in view of our resolution to work only 
in terms of a single system of background coordinates that are specified in ad- 
vance independently of any particular imbedding. 

When projected back into terms of the corresponding background coordinate 
components according to the prescription R.a". = c4,d 82~c/'z D.R.4BCD, the resulting 
spacetime version of the inner curvature is found to be given directly by the (for- 
mally) tensorial expression [the analogue of (7.4) ] in the form 

R,a/'. = 2 t /~ 'r / , r r / j  P~]p~ °~ + 2p [~'~p~ )~, ( 8.2 ) 

in terms of the pseudo-tensorial quantities defined by (4.12 ) and the tangential 
covariant differentiation operator defined by (5. I ). It will not only have the usual 
Riemann symmetry properties 

R ~ / , , = R I ~ I I u ,  ) =Ru, ,~ ,  R[~/,], = 0 ,  (8.3) 

but will evidently also, by construction, be characterised by the property of being 
purely tangential to the p-surface, like the fundamental tensor qu" itself, i.e., it 
will vanish under the action of any orthogonal projection, 

y~°Roa~. = 0.  ( 8.4 ) 

Analogous remarks naturally apply to the Ricci contractions 

R~.=R~o .  ° , R = R o  ° , (8.5) 

for which we shall have 

R[~,. j = 0 ,  7F,°R~. = 0 .  (8.6) 
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Continuing along the lines suggested by the standard procedures described for 
the background spacetime curvature in the preceding section, we can go on to 
define the internal analogue of Schouten's trace adjusted Ricci tensor (7.6) as 

1 R~/u. , (8 .7)  
/ ~ . .=R~ , .  2 ( p -  1) 

which will o f  course satisfy 

Rt,,,, j = 0 ,  h,"~q,,,, = 0 .  (8 .8 )  

This will identically vanish in the special case (which applies to "string" models) 
of an imbedded surface that is two dimensional, p =  2, for which we shall have 

R,~U"= Rtlt'ctutb.I "1 , Ru, = 0  (8.9) 

Otherwise, i.e. for imbedded surfaces of higher dimension, p>~ 3, the internal 
curvature tensor will be decomposable in the form 

4 ~ 
R"au"= C~xu"+ ~ - 2  tlt"tUR~l"l ' (8.10) 

where the quantity Co.,, that thus makes its appearance is what we shall refer to 
as the internal con formal curvature tensor, its role being evidently analogous to 
that of the background Weyl tensor that was introduced in (7.7). It is evident 
that, as well as inheriting algebraic symmetry properties of the same form as those 
expressed by (8.3) for the full internal curvature tensor, it will in addition not 
only have the same tracelessness property as that expressed by (7.11 ) for the 
ordinary background Weyl tensor, but will also have the property oftangentiality, 
i.e, vanishing projections orthogonal to the p-surface: 

C,,,,"°= 0,  7,,.~'C,,,¢" = 0.  (8.11) 

It is obvious (from the point of view of the frame component approach) that 
the theorem [ 3 ] that was quoted in the previous section can be taken over from 
the background spacetime geometry to the internal geometry of the imbedded p- 
surface, the implication being that the vanishing of the internal conformal cur- 
vature tensor C, au, is both necessary and sufficient for the internal geometry of 
the p-surface to be conformally flat provided p>~ 4. In the special case p =  3 (that 
is relevant to membrane dynamics in ordinary spacetime) the internal conformal 
curvature tensor will vanish automatically, and as a sufficient condition for con- 
formal flatness of the internal geometry of the imbedded three-surface it will then 
be necessary to require the vanishing of the analogue of  the tensor introduced in 
(6.12), i.e., of the tangentially projected higher derivative tensor that is specifi- 
able as 

/ ~ , ,  = r/,,'r/[,,"lTq/~. (8.12) 
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At the higher differential order involved in (8.12 ) the internal curvature will 
of course be subject to a generalised Bianchi integrability condition that is the 
analogue of the background Bianchi identity (7.13 ). The relevant Bianchi iden- 
tity for the internal curvature of an arbitrary spacelike or timelike imbedded p- 
surface in a general Riemannian or pseudo-Riemannian background is obtaina- 
ble in the form 

?l[~:vq,~PVl~]Rvpa'r= 2Rt,a"t~Kul. "1 , (8.13 ) 

whose fully tangential projection into the p-surface is just the corresponding or- 
dinary p-dimensional Bianchi identity [the right hand side of (8.13 ) being ob- 
viously taken out by the tangential projection operation ]. 

In the absence of information about the background curvature tensor, the in- 
ternal curvature tensor R,~U. as introduced in the present section can be consid- 
ered to be algebraically independent of the second fundamental tensor K~ u that 
was presented in sections 4 and 5. However, when the background curvature ten- 
sor B,aU. is known then the obvious possibility of identifying the quantities ap- 
pearing on the right of  (8.1) as a subset of those appearing on the fight of (7.3) 
can be used to evaluate the internal Riemann tensor frame components and hence 
(by contraction with the relevant tangential frame vectors tA u) to obtain the cor- 
responding spacetime coordinate components in the form 

R,aU. = 2K[,~U~Ka]~,,+ q,flrla"q~uq flB.,,To . (8 .14)  

This expression is interpretable [ 1 ] as a generalisation of the historic Gauss 
equation for an imbedded hypersurface, and has the advantage over (8.2) of 
making the strictly tensorial (frame independent) nature of the internal curva- 
ture more directly apparent, as a manifest consequence of the strictly tensorial 
(frame independent) nature of the background curvature tensor and of the first 
and second fundamental tensors as previously introduced. 

The simplest non-trivial applications of the concept of inner curvature are of 
course those, including the physically important case of string models, for which 
the imbedding has dimension p =  2 with the implication that the inner rotation 
group is Abelian so that the second term in (8.2) will drop out. When p = 2  the 
imbedding surface will be characterised by an antisymmetric unit tangent ele- 
ment tensor given by 

gUY= g l U " |  = ~ABIAUIBV 

(where gAB are the constant components of the standard two-dimensional flat 
space alternating tensor), which can be considered as a square root of the first 
fundamental tensor, which will be given simply by 

qu = +_gu g,, , 

where the upper (positive) sign applies to the case of a timelike world sheet and 
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the lower (negative) sign to the case when the imbedded two-surface has an in- 
duced metric that is positive definite. Since the analogue of (5.3) governing the 
tangential derivative of this surface element tensor will be expressible in terms of 
the second fundamental tensor by 

whose fully surface tangential (as also its fully surface orthogonal ) projection can 
be seen to vanish identically, it follows that the contraction of (8.2) with the 
surface element tensor gives an identity of the simple form 

R ~,~ = R , J  ~ u  = 2rlt a"V,,lp~ , 

with 

po =p,U 8"j,, 7aTp¢=O, 

which shows (see appendices) that the restriction of the two-form Rgu.  to the 
imbedding two-surface is the exterior derivative of a (locally defined, frame gauge 
dependent) one-form (covector) Pu in the surface, this property being what gives 
rise [ 18,19 ] to the topological invariance of the corresponding generalised Gauss- 
Bonnet type integral that is obtainable by integration of the curvature scalar R 
over the entire imbedding two-surface subject to appropriate boundary condi- 
tions if it is non-compact (as will normally be the case for the timelike world 
sheet of a string model ). 

9. The outer curvature tensor 

The construction of an appropriate curvature tensor, whose vanishing is nec- 
essary and (locally) sufficient for the frame in question to be adjustable so as to 
eliminate the corresponding connection coefficients, can now be carded out for 
the outer (surface orthogonal ) frame ;tR ~' by a procedure very similar to that em- 
ployed in the previous section for the inner (tangential) frame. This is done by 
applying, with respect to the relevant (n-p) -d imensional  outer rotation group, 
the standard gauge theoretical principles that were first systematically developed 
at the time of Cartan, and that have become widely known [ 12,13 ] since the 
introduction of Yang-Mills theory, but that were not familiar to classical geo- 
meters of the nineteenth and early twentieth century, up to and including such an 
authority as Eisenimrt [ 1 ]. One thus obtains the Cartan frame components of the 
required outer curvature tensor as 

R R R T  2 C R (9 .1 )  g2.4s s=2VtAogB 1 s+2Ogt~t 09slrs-- PIA alt°c s ,  

recalling that the early Latin indices (A, B, C) refer to the tangential frame within 
the p-surface under consideration, while the late Latin indices (R, S, T) refer to 
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the outer frame whose (n-p)-d imensional  rotations [as characterised by the 
preservation of the diagonal constant product matrix ?m given by (4.10)] con- 
stitute the gauge group in question. 

The first two terms on the right of (9.1) are of the kind that are familiar from 
flat space Yang-Mills theory, while the remaining last term on the right could be 
made to drop out by using a flat connection if the inner curvature R A f o  of the p- 
surface were zero. The corresponding term would also drop out quite generally if 
we went over to the equivalent formula as expressed in terms of partial differen- 
tiation with respect to an internal coordinate system (such as we have refrained 
from introducing in the present work) on the p-surface, but the extra term is 
needed in the version (9.1) because it uses frame oriented covariant differentia- 
tion rather than the Cartan procedure of antisymmetrised partial differentiation 
of differential forms. There is, however, no need to introduce an internal coordi- 
nate system to get rid of the extra term; it will also drop out of its own accord 
when we go over from the frame version (9.1) [the outer analogue of (8.1) ] to 
the background coordinate version [the outer analogue of (8.2) ] for the tenso- 
rial form ~2~u,= IAKIBA~4BRs2RP2Sv of the outer curvature. This spacetime ten- 
sorial version will be given, in terms of the tangential covariant differentiation 
operator 17 u introduced in (5.1), by the comparatively simple formula 

~Q,at'v = 2y,,uy,'~/ta"~,q(o,,"~+ 2OJ [~J'~ma 1 ~ , ( 9.2 ) 

which, like (8.2), gives a frame independent result despite the frame dependence 
of the separate contributions on the right hand side as defined by (4.12). Unlike 
the inner curvature tensor, which has the full set of Riemann symmetries (8.3), 
the outer curvature tensor only has the more restricted set of symmetries that are 
expressed by 

.('~lJvpa:~(~[izvl [pa .1 , (9.3) 

i.e., is is antisymmetric on the first and last pair of indices taken separately. It 
also differs from its inner analogue in that, whereas it is of course still tangential 
on the first pair of indices, on the other hand it is orthogonal on the last pair, i.e., 

7j~Qrvpa=O , ~"~lavpz~'ra=O . (9.4) 

It obviously follows that the outer curvature tensor is purely WeyMike in the sense 
that the analogue of the Ricci contraction (8.5) is identically zero, 

/2~a~=0. (9.5) 

On the basis of the well-known generalised Bianchi identity that holds for the 
curvature of any kind of differential connection [ 19 ], one can verify in this case 
that the analogue for the outer curvature of the identity (8.13 ) is the higher dif- 
ferential identity that is expressible as 

~/[ J~/aP V,,I ~vp °~= 2£a[ ~a"[ ~Km ~] v. ( 9.6 ) 
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Starting from our original frame component expression (9.1), the formalism 
that has been developed now makes it straightforward to work out the "third" 
(Voss-Ricci-Walker-Schouten) relation of the trio referred to in the introduc- 
tion, i.e., the outer analogue of the generalised Gauss relation (8.14) between 
inner curvature and the relevant projection of the background curvature. As in 
the previous case one obtains a term that is quadratically dependent on the ex- 
trinsic imbedding curvature tensor, K~,f. The outer curvature is thus finally eval- 
uated, in a form that [unlike the previous expression (9.2)] makes its strictly 
tensorial (frame independent) nature obvious, as 

g2~u~ = 2Kt,flUKa l~  + rl f rl fl~'~u? flB p~o . (9.7) 

The symmetry conditions (9.3) clearly imply that the outer curvature can be 
non-zero only if neither the surface dimension p nor the codimension ( n - p )  are 
less than two, a condition that rules out both the case of simple one-dimensional 
curves and the case of hypersurfaces. In a four-dimensional background space- 
time, the only case in which non-trivial outer curvature can occur is that for which 
the imbedded surface is two dimensional (as is the case for the world sheets of 
strings), and even in this case the outer curvature can only be of the Abelian kind 
(i.e. of Maxwellian rather than general Yang-Mills type) since in order for the 
outer frame gauge group to be non-Abelian it is clearly necessary for the comple- 
mentary dimension ( n - p )  to be at least 3, which means that non-Abelian gauge 
curvature can only occur if the background dimension n is at least 5 [as is the 
case in Kaluza-Klein models, but not in ordinary spacetime, which is doubtless 
one of the reasons why relation (9.7) would seem to have been previously over- 
looked in the literature of theoretical physics ]. 

In view of (9.5) it is evident in advance that the net result given by (9.7) must 
be identically trace free. However, the most noteworthy feature of this outer cur- 
vature equation is the separate cancelling out of the separate trace parts (namely 
the extrinsic imbedding curvature K p and the background Ricci tensor Bu~) in 
the source contributions on the right, so that in a spacetime background of di- 
mension n >/3 the final result is expressible purely in terms of the trace free con- 
formation tensor c u r  given by ( 5.9 ), and of  the Weyl conformal tensor W~a"~ of 
the background as given by (7.7), in the form 

(9.8) 

which is to be considered as the definitive version of the "third" equation in the 
generic case. Since it is apparent that each of the two separate terms on the right 
is separately conformally invariant, we can deduce as an immediate corollary that 
the outer curvature tensor £2~uv is itself conformally invariant. 

The very convenient and widely used Walker, [ 6 ] generalisation to an arbitrar- 
ily accelerated curve of what in the special case of a geodesic are traditionally 
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known as "Fermi coordinates" is generated by an external frame that is propa- 
gated according to a rule expressible as the condition that the corresponding outer 
rotation coefficients should vanish. This Walker (or, as it is commonly called, 
"Fermi-Walker")  propagation rule is thus a special case of a more general prop- 
agation ansatz expressible in the notation used here as the requirement that the 
outer gauge connection coefficients ogRST should all be zero. Unfortunately (from 
the point of view of many applications [20,21 ] for which the corresponding ge- 
neralised Walker coordinate system would be useful) the possibility of imposing 
such "outer-flat" propagation is limited to cases in which the corresponding outer 
curvature tensor 12J',, is zero, which, as remarked in the previous paragraph, is 
guaranteed in advance for a curve (the case originally considered by Walker) or 
a hypersurface, but not for imbedded surfaces of intermediate dimension, such 
as the case of a string in four dimensions or a membrane in a higher-dimensional 
background. 

In any background that is conformally flat (at least to a sufficiently good ap- 
proximation over the length scales under consideration, as will very often be the 
case ), and in any three-dimensional spacetime background whatsoever, the Weyl 
tensor W J ' ,  will vanish so that it will follow from (9.8) that a sufficient condi- 
tion for the generalised Walker "outer-flat" propagation condition to be imposa- 
ble is the vanishing of the conformation tensor as defined by (5.9). Although it 
will thus be sufficient, the vanishing of this conformation tensor is clearly not 
necessary for outer flatness, since, while it vanishes identically in the case of a 
curve, C~,,? can evidently be non-zero in the trivially outer-flat case of a hyper- 
surface (see the final paragraph of section 5 ). 

The simplest non-trivial applications of the concept of outer curvature are those, 
including the physically important case of string models in a background space of 
four (but not more) dimensions, for which the imbedding has codimension 
n-p=2 with the implication that the outer rotation group is Abelian so that the 
second term in (9.2) will drop out. When n-p=2 the (Hodge type) dual to the 
p-index antisymmetric surface measure tensor of the imbedding will be a two- 
index antisymmetric tensor orthogonal to the surface given by 

g.~,, = & [~,,] = & RS2R~,2 s, 

(where ~*RS are the constant components of a standard two-dimensional flat space 
alternating tensor), which can be considered as a square root of the orthogonal 
complement of the first fundamental tensor, which will be given simply by 

7J' ,= ~ d'o ~'a~'. a, , 

where the upper (negative) sign applies to the case of a timelike world sheet. 
Since the analogue of (5.3) governing the tangential derivative of this surface 
element tensor will be expressible in terms of the second fundamental tensor by 
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17o &, , ,=  2Kot,,*&,l,, 

whose fully surface orthogonal (as also its fully surface tangential ) projection can 
be seen to vanish identically, it follows that the contraction of (9.2) with the 
surface element tensor gives an identity of the simple form 

with 

K2,,, =K2~ t ,~.  , =  2r/taq~ 1o9o, 

03o=O)ol~v~.vll , ~)trrO.)r= 0 , 

which specifies a (geometrically well-defined) two-form ~u~ (=f2t~,~ I ) with the 
property that (as in the analogous case of the inner curvature of an imbedded 
two-surface as discussed at the end of the previous section) its restriction to the 
( n - 2 )-surface of the imbedding is the exterior derivative (see appendices ) of a 
(locally defined, frame gauge dependent) one-form w~ in the surface. 

In the special case of a four-dimensional background, the outer curvature of a 
surface of codimension (and hence also dimension) two will be fully determined 
by a single (pseudo-)scalar invariant, ~2 say, in terms of which the surface-closed 
curvature two-form introduced in the preceding paragraph will be expressible as 

(where ~po  denotes the standard fully antisymmetric four-volume measure ten- 
sor of the background, in terms of which we shall in this case have 2g.t,~ = ~,F#po)- 
In this case, the integration of this two-form over the entire imbedding two-sur- 
face subject to appropriate boundary conditions if it is non-compact (as will nor- 
mally be the case for a timelike world sheet) will give rise to a topological invar- 
iant that can be considered as an "outer" analogue of an ordinary "inner" Gauss- 
Bonnet type invariant of the kind mentioned at the end of the previous section. 
In particular this applies for an ordinary spacetime background to the physically 
interesting case of a string world sheet, and also to the case of a spacelike two- 
surface, which was studied by Penrose [22,11 ], who showed how a spinor ap- 
proach leads naturally to the construction of a single complex curvature invariant 
that effectively combines the two independent (real) inner (scalar) and outer 
(pseudo-scalar) curvature invariants R and O (the corresponding combination 
of their surface integrals thus giving a complex generalisation of the ordinary real 
Gauss-Bonnet type global topological invariant). 

10. The internal curvature in a conformaily fiat background 

The conclusion of the preceding section is an illustration of the critically sig- 
nificant role of the conformation tensor C~,f of an imbedding when the back- 
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ground is conformally flat, which suggests that it will be of interest to make a 
closer examination of its role with respect to the inner curvature, R~aJ'~, and more 
particularly of its tensorially irreducible parts, in this conformally flat case, i.e., 
when the conditions 

W~ai', = 0 ,  ( 10.1 ) 

/~a,,, = 0 ,  (10.2) 

are both satisfied (the second of these conditions being a consequence of the first 
except when the background dimension is n = 3, in which case the first is merely 
an identity [ 3 ] ). This restriction is of course compatible with all the most com- 
mon kinds of application, in which the background is taken to be not just confor- 
mally flat, but flat in the strong sense, which is justifiable at least as a very good 
approximation in a very wide range of circumstances in which the characteristic 
length scales of the imbedding will be small compared with those of the back- 
ground curvature if any. Although it is unnecessary for such cases, we shall never- 
theless retain allowance for the possibility of a non-zero background Ricci tensor 
Bu~ in the formulae that follow since the extra complication involved thereby is 
only very moderate (compared with what would result if allowance for a non- 
zero background Weyl tensor were also included ). 

Subject to ( 10.1 ) and leaving aside the trivial (always locally conformally flat) 
case of a two-dimensional background, the generalised Gauss relation (8.14) re- 
duces to the form 

2 
+ (~/t ~qa IP~/~- ~/~ t ~ ~/a f~/~'~)/~,~ ( 10.3 ) n - 2  

Proceeding from this formula, the irreducible part of the inner curvature that is 
simplest to evaluate in terms of the analogously irreducible parts Kp and Caj of 
the second fundamental tensor Kuf is of  course the inner Ricci scalar, which 
[subject to ( 10.1 ) ] works out as 

n - 2  ~/PaBp~ B n - l  

1 p -  
+ K~Ka-CaSCaU~ (10.4) 

P 

(this being the quantity whose surface integral in the special case p =  2 gives the 
ordinary Gauss-Bonnet type invariant that was mentioned at the end of section 
8 ), while the full inner Ricci tensor is given by a slightly longer chain of assorted 
terms having the form 
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p - 2  
R j,. - rhfr/.~Bp~ 

n - 2  

1)-2 
+ G, fK~--CR~'C,R~. (10.5) 

P 

For cases in which the imbedded surface has dimension p~< 3, as must always 
be the case in an ordinary four-dimensional spacetime background, the specifi- 
cation of the Ricci contribution provides all that is needed to specify the com- 
plete inner curvature tensor. However, to fully specify R,a~'~ in higher-dimen- 
sional cases for which the imbedded surface has dimension p>~4 it will also be 
necessary to account for the generically non-zero conformal curvature term C,a~'~ 
that will contribute to the total as given by (8.10). The rather greater algebraic 
effort required to work out this inner conformal curvature contribution is re- 
warded by the qualitatively tidy form of the result, which [in contrast with the 
miscellaneous form of the terms assembled in (10.4) and ( 10.5 ) ] is homogene- 
ously quadratic in the conformation tensor alone, the contributions of the trace 
vector K ~' and of the background Ricci tensor Bu~ again [as in (9.7) ] being found 
to miraculously cancel out altogether, leaving 

4 
C'¢'~'"=2C['¢u'~C'tl"° p - 2  C't~'dl"lt~C~lP~ 

2 
- ( p - 2 )  ( p -  1 ) rlt~*gh1~CR'¢CP~'*" (10.6) 

In view of the theorem [ 3 ] recapitulated in section 7, we can therefore draw the 
memorable conclusion that vanishing of the conformation tensor C*'~ is a suffi- 
cient condition not only for (local) outer flatness but also for (local) internal 
conformal flatness, at least for an imbedded surface with dimension p>  3. 

To see that this result still holds for the lower-dimensional cases that are in 
practice of greatest interest a little more work is required. In the case of a curve, 
p= 1, the internal curvature is of course identically zero, and in the case p = 2  
(that of a string) the internal curvature is fully determined by the Ricci scalar 
alone, (local) conformal flatness holding automatically, the conformal curvature 
tensor being undefinable. This leaves as the only non-trivial case still to be dealt 
with that for which the imbedded surface has dimension p= 3 (which applies to 
the world sheet of a membrane),  and for which the conformal tensor (10.6) is 
well defined but identically zero, so that to obtain a sufficient condition for inter- 
nal conformal flatness we need to evaluate the higher derivative tensor /~u ,  as 
given by (8.12). The algebraic effort required to do this is even greater than in 
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the previous case, but as before it is rewarded by a very neat result. After the 
rather miraculous cancellation of many contributions involving B,,, and K" one 
is left just with a homogeneous bilinear combination only of the conformation 
tensor and of the third fundamental tensor, whose details are expressible as 

- -  p i t  .--. ( "  a . - "  p ( " ,  tr.--, p 
R ;~ I . ,  = C u ~ [ l f f t  ] p n  "3 I -  s._. p [ /= --,,l 1/, o ' - -  s'-" p [ I ,  ~ A I I '  n 

1 
ap ,~"  ( 10.7 ) + tl~l~, C -~l~p~ 

p--1  

(in which the first term on the right will vanish by the strong symmetry condition 
(6.7) whenever the background is not just conformally fiat but strictly fiat or of 
constant curvature). Since it evidently follows that if C~,f is zero then so is/~a,~, 
we thus complete the demonstration that the vanishing of the trace free confor- 
mation tensor of the imbedding is always, without exception, a sufficient condi- 
tion for conformal flatness in a conformally fiat background. 
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it might not have been undertaken in the first place. Last but not least I wish to 
thank Roger Penrose for the inspiration and guidance to which so many of us owe 
so much, and in particular for arousing a permanent awareness of the importance 
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Appendix A. Background tensor surface forms and Stokes theorem 

It is evident that there is a natural bijective correspondence between the intrin- 
sically defined tensors within a given spacelike or timelike p-dimensional sub- 
manifold ~ with first fundamental tensor ~/i,,,, say, and the set of projection in- 

variant background tensors, i.e., those that are invariant under the projection 
operation - whose effect we shall denote by an overhead bar - consisting of con- 
traction of all indices with the corresponding projection tensor, which, for action 
on a tensor with q indices, will be given by 

V I  " " " Pq P l  . Pq r/,,...,q=r/,, "r/uq , (A.1) 

which is the analogue, with respect to projection invariant q-index tensors on the 
p-surface, of the ordinary Kronecker operator 

~'~q "3uq ~q, (A.2) jm...uq =d; m ~l. 
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that acts as an identity operator on a general q-index background tensor. 
Let us focus attention on the case of an arbitrary smooth q-dimensional sub- 

surface 5~, say, that we suppose to be confined within the non-null p-surface 
with respect to which the projection operator (A. 1 ) has been defined: 

~ c @ .  (g.3) 

The only kind of tensor F whose integral over an imbedded q-surface is naturally 
well defined independently of any auxiliary (e.g. metric or linear) structure is 
(as has been well known since the time of Caftan ) that of a q-form, meaning that 
it must be fully antisymmetric and covariant with components 

F,,...,,~ =Ft,,,...,,~I . (A.4) 

Its projection/~ with components 

" ' " ~  (A.5) Fm...m = Sl/,,...,~f ,,,...,,~ 

will therefore also be a q-form on @, even though it is undefined elsewhere on the 
background. What is important to notice is that subject to (A.3) the natural 
(Caftan) integral of F is necessarily the same  as that of its projection F as given 
by (A.5), i.e., in standard shorthand notation 

.,/,~ .,.,,~, 

The most important basic result in the Cartan integral calculus is the general- 
ised Stokes theorem: 

F=OA == f F= ~ A,  (A.7) 
• ' / q  . ' / ~ -  a 

whenever ~ has compact closure with a smooth compact ( q -  l )-dimensional 
boundary manifold 5cq_ ~, where OA denotes the exterior derivative of a ( q -  l )- 
form A, which is definable by an expression of the form 

(0A)a~,2...u, =qV',',~".~.-u~aA,,...~-, =qlTEaAu,...~] , (A.8) 

where the components of the ant isymmetr ised  derivation operator are specified 
by 

~TI)q'"Vq--I _ _  ,J~ I-°1 ' " ' V q - -  I ~ 1  " ' l l l q - -  1,1 • , , , " ' ~ - , , , ~  - ~ "  t . , ~ - ,  1 7 1  = ~" t , . , " ' . . - , , ~ !  V~.  ( A . 9 )  

The exterior derivation operator (A.8) is well known to have the Poincare exact- 
ness property (on which cohomology theory is based), meaning that the "clo- 
sure" of F, i.e., the vanishing of its own exterior derivative, is both necessary and 
locally sufficient for it to be the exterior derivative ofa  ( q -  1 )-form A: 

00F=0 ¢~ F = O A .  (A.10) 
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It is evident that the general exterior derivation operation 0 defined by (A.8) 
is meaningful only for a form A that is defined on an open neighbourhood on the 
background space, but not for a form whose support is confined to a lower-di- 
mensional submanifold. In order to be able to deal in an analogous way with 
forms whose support is confined to the p-dimensional non-null submanifold 6:p 
with fundamental tensor r/u" that was introduced above, it will, however, suffice 
to work with the corresponding projected exterior derivation operation 0 that is 
naturally defined by 

(0A) ~/,2.--u~ - " ' " q - '  (A. l l ) =qVu,--.~;. Aj, l...,q_l , 

where the components of the projected antisymmetrised derivation operator are 
specified by 

V b ' l  " '" Vq-- I I ~ b'l " ' ' b 'q - -  I VI " "" Vq-- I/. 
/ z l . . . ~ q _ I / /  _ _ l / [ / t l . . . / ~ q _ i  ~ /~q]  iT) . ( A .  1 2 )  = / ' ~  [ . U l - . - p q -  i /zq]  . 

As thus defined, the operations of projection and exterior derivation commute in 
the sense that [as can easily be checked explicitly using the Weingarten symmetry 
property (5.4)] the projection of an ordinary exterior derivative gives the same 
result as the action of the projected exterior derivative on the direct projection, 
i.e., for any background q-form F defined in an open neighbourhood of the 
imbedded p-surface 5ep we have the identity 

(OF) = O F .  (A.13) 

Although it is well defined only on ~ ,  the projected exterior derivation opera- 
tion has the advantage of still being well defined there even when acting on a form 
F whose support is already confined to ~ ,  in which case the left hand side of 
(A. 13 ) would be undefined whereas the right hand side of (A. 13 ) would remain 
unambiguously meaningful: under the bijective relation mentioned at the begin- 
ning of this section, the form OF is the projection invariant background tensor 
corresponding to the intrinsically defined exterior derivative within (not just on ) 

(considered as a p-dimensional manifold in its own right ) of the intrinsic form 
corresponding of  the projection invariant background tensor/~'. It follows, as a 
consequence of the intrinsic Poincar6 property within ~ [or equivalently by 
(A. 13 ) as a consequence of the background Poincar6 property (A. 10 ) for a form 
whose domain of  definition extends out into an open neighbourhood on the back- 
ground space ], that we shall get a projected Poincar6 property to the effect that 
the vanishing of the projected exterior derivative of a projection invariant form 
F is both necessary and locally sufficient for it to be the projected exterior deriv- 
ative of a projection invariant ( q -  l )-form A, say: 

00F=0 ¢> F=OA. (A.14) 

Similarly, as a consequence of the intrinsic Stokes theorem within ~ [or equiv- 
alently by (A. 13 ) as a consequence of the background Stokes theorem (A.7) for 
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a form whose domain of definition extends out into an open neighbourhood on 
the background space ], it can be seen [bearing in mind (A.6) ] that we shall get 
a projected Stokes theorem to the effect that, whenever ~ has compact closure 
with a smooth compact ( q -  l )-dimensional boundary manifold ~ _  ~ within 5pp, 
we shall have 

A= f 0,4 (A.15) 
. ' :q -  = . '~  

for any ( q -  1 )-form A with support on ~ .  This is interpretable as a strengthen- 
ing of the original generalised Stokes theorem (A.7), because it applies even i fA 
is not specified outside 5:; and so has no well-defined exterior derivative 0A of 
the ordinary kind that appears in the usual formulation (A.7). 

Appendix B. Background tensor surface divergence and Green theorem 

Rather than working with the covariant forms that are most fundamental from 
a mathematical point of view, and at the expense of having to introduce an ap- 
propriate measure, physicists tend to prefer to use a d u a l  f o r m u l a t i o n  whereby 
the fluxes of interest are treated in terms of c o n t r a v a r i a n t  current multivectors: 
clearly any q-form F has a corresponding dual ( n - q)-vector (i.e. a fully antisym- 
metric contravariant tensor), fl say, in terms of which it can be expressed in the 
form 

F = f l .  , (B.1) 

where the duality relation is defined by 

( n - q ) ! f l .  u, ...u~ = f l " '  ~"-qe~,... v,_qu,... ,~ , (B.2) 

in terms of the standard measure form (the ordinary alternating tensor) ~ of the 
n-dimensional background space. (The dual formulation has the technical ad- 
vantage of reducing the number of indices involved when 2q> n so that n - q  is 
smaller than q. ) 

The dual analogue of the exterior derivation operation indicated here by 0 is 
the interior derivative or d i v e r g e n c e  operation that we shall indicate here by the 
abbreviation div. (In pure mathematical texts it is common practice, in place of 
0 and div, to simply use d and ~, respectively, but we deliberately refrain from 
doing this here in order to avoid confusion, in view of the many other uses of 
those much overworked symbols.) This operation is constructed in such a way 
that for any multivector fl the identity 

(div fl).  = 0(ft.) (B.3) 

is always satisfied, which is done by defining the components of the divergence 
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to be given for an (r+ 1 )-vector simply as 

(div f l )" t ' "" ' -  V "v'''~ /V"'" '* ' = V,~fl ''''''~a (B.4) - -  i t i . . . M r + l g . .  

With this convention, the Stokes theorem (A.7) can be rewritten as 

f l=d iv . /  =~ f f l . =  ~ J . ,  (B.5) 

this dual reformulation being what is commonly known as Green's theorem. 
Although it commutes with exterior derivation in the sense expressed by (A. 13 ), 

the p-surface projection operation does not  have an analogous commutation re- 
lation with the duality operation (B.2). Thus there is no simple analogue of (A. 12 ) 
for divergences, while similarly there is no simple dual analogue of (A.6), i.e., it 
is not generally possible to replace an r-vector . /by its projection ] a s  given by 

j ~ : " ' , ,  j t~ , - "~ . ]  _ ,~ , ,  ..... l ~ - u ,  ( B . 6 )  
~ , l  / . l l . . . ~ r  v 

in a dual integral expression such as that on the fight of (B.5). 
The foregoing caveat means that more care is needed to deal with divergences 

in an imbedding than with the more fundamental exterior type of derivation op- 
eration, but it does not mean that there is any obstacle to performing the intrinsic 
analogue for an imbedded p-surface of the usual trick whereby the Stokes theo- 
rem as expressed in terms of exterior derivation is transformed into the Green 
theorem involving interior derivation. To perform such a trick, so as to obtain a 
dual analogue of (A. 15 ) in terms of a projection invariant multivector field ./say 
(i.e., one for which ] =  d), it will, however, be necessary to go back and start again 
with a modified kind of duality, which we shall indicate by the use of a five in- 
stead of six pointed star, that is defined in terms of  the restricted p-surface ana- 
logue of the background measure tensor, namely the fully antisymmetric projec- 
tion invariant p-form that is fully characterised modulo a choice of orientation 
by 

Cu,...u, = ~tu,. . . , , l  , ( B . 7 )  

together with the standard normalisation condition that is fixed by any single one 
of the set of mutually consistent self-contraction conditions 

6 "~,'''~quq+ , u p  g~ ,...a quq+ t ...up = + q! ( p _  q)1-~,,~q (B. 8 ) • I /  [.,1.1 • • ' ) . q  ] , 

giving (on the right) the antisymmetrisation of the projection operator [as de- 
fined by (A. 1 ) ] for any value of q in the range from 0 to p, the sign + being the 
signature of the induced metric on the p-surface. It can be seen that the covafiant 
surface gradient of this tensor will be expressible in terms of the second funda- 
mental tensor of the p-surface in the form 

ff a gu,...U~ = po~,tu, " K ~ ,  up) (B.9) 
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In terms of the standard surface measure p-form (B.7), the projected surface 
analogue ft. of the ordinary dual p.  for an r-vector ,8 is naturally definable by the 
obvious analogue of (B.2) as 

1 
fl.~,+,...,,,- (p_q)! fl~'~¢~,...~,,,+,...~,,. (B.10) 

This definition evidently satisfies identities of the form 

//. = (,8,) = (/1), (B.11) 

(which would fail to hold if • were substituted in place of*  ). It can be seen [with 
the aid of (B.9) ] that this definition is such that we recover the natural surface 
projected analogue of the identity (B.3) in the form 

(d-ff f l) .  = ~ ( f l . ) ,  (B.12) 

where the projected derivation operator di~ is defined by the obvious analogue 
of (B.4) in terms of the projected antisymmetrised derivation operator (A. 12) 
according to the specification 

(-d~ f l ) ~ ' " ' - -  V~,-~'"...~,r+ , f l '"~"+' . (B. 13) 

It follows from (B. 12 ) that we get a dual reformulation of the projected Poincar6 
property (A. 10), to the effect that the vanishing of the projected divergence of a 
projection invariant r-vector p i s  both necessary and locally sufficient for it to be 
the projected divergence of a projection invariant ( r+  1 )-vector J, say: 

d-~d-]-~fl=0 ¢:. f l=d-~Y.  (B.14) 

Finally, with the definitions (B.1 1 ) and (B.13) we also get the natural dual re- 
formulation of the projected Stokes theorem (A. 15 ) as a surface projected Green 
theorem stating that, whenever 6eq has compact closure with a smooth compact 
( q -  1 )-dimensional boundary manifold 6eq_ ) within ~ ,  we shall have 

• ~ - I  ,~q 

for any ( p -  q+  1 )-vector J with support on 6ap. 

(8.15) 
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